
 Bilkent  University 

 

Senior  Design  Project 
Etymøn: A Deep-Learning Application for Etymological Clustering 
of Words 

Analysis  Report 

Nashiha Ahmed, Mert İnan, Cholpon Mambetova, Utku Uçkun 

Supervisor: Prof. Mehmet Koyutürk 
Jury Members: Prof. Uğur Doğrusöz and Prof. Varol Akman 

Analysis  Report 
Nov 6, 2017 
 
This report  is  submitted  to the Department  of Computer Engineering  of Bilkent  University 
in partial  fulfillment of the requirements  of the Senior  Design Project  course CS491/2. 
 

 



 

 

Table of Contents 

 

Introduction 3 

Proposed System 3 

Overview 3 

Definitions 3 

Functional Requirements 4 

Non-functional Requirements 5 

Performance 5 

Correctness 5 

Pseudo Requirements 5 

System  Models 6 

Use  Case  Model 6 

Visionary Real-Life Scenarios 7 

Use Case Descriptions 9 

Dynamic  Model 16 

Object & Class Model 21 

User  Interface 22 

References 27 
 
 
  

2 



Analysis  Report 
Etymøn: A Deep-Learning Application for Etymological Clustering of Words 

1. Introduction 

Etymøn is an analysis and tracing tool for word origins in all languages. It will be used to                  
review current etymological language families and if possible find new connections that            
were not already present in current taxonomy. It will accomplish this using a deep learning               
approach. 

In the following sections, a brief description of the system and the system requirements              
are discussed. In addition, Etymøn’s  system models  are also detailed.  

2. Proposed System 

2.1. Overview 

Etymøn will be a system that contains three main components: deep-learning,           
augmented-reality with object  recognition, and  generative dreaming.  

Etymøn bases most of its functionalities on the etymological map that will be generated by               
the deep learning algorithm. The program will collect most of its data about words from               
online resources and  it  will  cluster the words according  to criterias set  by the us. 

The augmented reality with object recognition component is an auxiliary component. Its            
purpose is to enable extra functionalities such as using your mobile phone camera with              
augmented reality or upload a picture to Etymøn webpage and the program will             
automatically search the name of the object  in the scene or in the image.  

Generative dreaming/ Hallucination component uses word clouds to generate or imagine           
new  words.  

Etymøn system will include a palpable product in the end as an online web-application and               
mobile application based  on this  etymological  map. 

2.2. Definitions 

Some  definitions  of Etymøn jargon are provided. 
● The Language Sea is the first view that the user is greeted with. It is a zoomed out                  

map of the most  abundant  words graphed  together to make a sea like  shape.  
 

 
Figure 1 This figure depicts a wave-like pattern that will  be like the Language Sea [1] 

3 



 
Figure 2 This figure is another clustered space that will  be like the Language Sea. [1] 

 
 

● The Word Cloud is  a local  graph for  words clustered  close to one each other.  

 

Figure 2:  This figure shows a local  graph for  the English word, “life”. Its  origin is  identified 
to be “leyp”  in the Proto-Indo-European  language  family, and  two descendent  words —one 

in Sanskrit  and  one in Greek—  are given next to the origin word. 
 

2.3. Functional Requirements 

● The system should provide etymological information for every word input by the            
user. 

● Etymøn should cluster words according to root features during the deep learning            
phase. 

● The system should show a default language map that contains all the origin             
languages  in the initial  screen. 

● Etymøn should convert words into vectors in order to be used by the machine              
learning  algorithm (word embedding). 

● The system will  allow  user to search a specific  word  in the database 
● Etymøn will facilitate navigation through the language sea so that the user may             

examine or zoom  in to any word  and  word  cloud. 
● The system will allow the user to choose a language area in the language sea for                

the map to display. 
● The system will  allow  the user to search for  random words. 

4 



● Etymøn will  hallucinate/create new  words when  prompted  by the user. 
● Etymøn must detect objects scanned by the user and find the etymologies of the              

words corresponding to those objects. This will be done through object recognition.            
The language sea will be displayed through augmented reality on the screen on             
which the object  that  is  scanned  is  displayed. 

● Etymøn should provide etymology of the word in the desired language in the             
augmented  reality feature.  

● The system should provide definitions of the words and pronunciation information           
in addition to their origin information. 
 

2.4. Non-functional Requirements 

Performance 

Since our word database is going to be massive in size we need to implement our program                 
in such a way that  it  will  feel  responsive. 

● Etymøn should  spend  less  than 5ms when  prompted  to search for  words. 
● Etymøn should not lag when the user navigates through the language sea. The             

transitions  from  word  cloud  to word  cloud  must  be smooth. 
● If a word does not exist in the Etymøn database, re-training of the algorithm              

should be done under 5ms. The system should inform the user that the algorithm              
is  being  re-trained.  

● Response time is crucial for the software, especially when database enlarges, it            
should  be able to give a user a desired  map without  taking  an extensive time.  

Correctness 

● Etymøn should give reliable output after proper analysis. A user should not receive             
wrong  matches. 

Usability 
● Etymøn should  have a simple and  straightforward user interface. 
● Etymøn should  be easily navigated  by the user. 

 

2.5. Pseudo Requirements 

● Graph visualizations  will  be done using  WebGL and  Three.js. 
● darkNet and YOLO will be used for object recognition in the augmented reality             

stage [2]. 
● Python, Java, HTML, Swift will  be used  for  implementation. 
● ARKit for iPhones, and ARCore for Android will be used for augmented reality             

components  and  the online component  will  use WebAR. 
● Word2vec [3] algorithm cannot be used. A new algorithm must be created to             

cluster words after turning  them into  vectors.  
● Machine learning algorithms will not run on user devices but on servers to             

manipulate the large dataset. 
 

  

5 



 

3. System Models 

In this section of the report, models of the system are described in detail, these models                
include use-case models, dynamic models and activity models. Furthermore, class and           
object models are also described in this section. As the classes observed in the problem               
domain are trivial, they do not involve various states, hence state diagrams are not              
presented. 
 

3.1. Use Case Model 

In this section, use cases of Etymøn are presented in detail. Firstly, a UML use case                
diagram is shown to demonstrate an overview of the relations of use cases with the actors                
of the system. There are four different actors involved in the system. Main actor is the                
user, which is followed by the administrator, another human actor. Two additional actors             
exist which are word database and object recognition module. Etymøn will be outsourcing             
the object recognition module as previously described, using the YOLO library [2].            
Additionally, it will be relying on the Word Database as an actor to provide the required                
word definitions and various stored data of the word. The use case diagram outlining all of                
these aspects  can be found  below. 
 
 
 

 
Figure 3 This figure is  the UML Use-Case diagram that  shows the general  relationships 

between the actors  and  the use cases of the system. 
 
  

6 



 

3.1.1. Visionary Real-Life Scenarios 

These scenarios represent the functionalities of the program in a more casual manner.             
They help ordinary people understand the use cases of the program as well as help               
facilitate the design of technical  use cases by us. 
 

Scenario  name WordCluster 

Participating 
actor  instances 

Prof.  Varol  Akman:  User 

Flow  of events 1. Professor Akman  is  keen  on learning  new  languages  but has  a 
full plate with research  and  teaching.  He wants  to  learn  a new 
language that would take as  little  effort and  time as  possible. 
He discerns  that learning  a language with many  similar words 
as  Turkish  may  accomplish  that goal. 

2. He decides  to  use the website called  Etymøn  to  search  for 
languages  that are mapped  closely  to  Turkish. 

3. He goes  to  the Etymøn  website and  is  greeted  with a cluster 
map  of  words  mapped  closely  together  that have the same 
origin.  

4. He chooses  to  view  the map  where Turkish  is  located.  
5. The map  rotates  to  the Turkish  words  and  searches  around  to 

see words  of  languages  that share the same etymologies  and 
thus  have similar words  to  Turkish.  

6. He finds  that Persian  is  such  a language and  decides  to  learn 
Persian. 

7. He checks  the website daily  to  find  words  that are clustered 
between  Turkish  and  Persian  and  learns  those words.  

 

Scenario  name objectNameTracing 

Participating 
actor  instances 

Prof.  Uğur  Doğrusöz:  User 

Flow  of events 1. While eating  a pineapple  slice, Prof. Uğur immediately 
realizes  that the word “pineapple”  is  different than  its 
equivalents  in  most other  languages. 

2. Intrigued  by this  thought,  Prof. Uğur wants  to  explore more 
about the origin  of  pineapple. 

3. Using Etymøn , Prof. Uğur shows  the pineapple to  the 
camera  of  his  smartphone. 

4. Prof. Uğur gets  the origin  information  as  an  Augmented 
Reality  word cloud  for  the recognized  pineapple. 

 
 
 

7 



 

Scenario  name WordTracing 

Participating 
actor  instances 

Prof.  Mehmet  Koyutürk:  User 

Flow  of events 1. Prof. Mehmet Koyutürk  is  bored  and  is  looking  for  a fun  way 
to  kill some time on the internet.  However,  he does  not want to 
waste time. 

2. He decides  to  use the new  website he heard  called  Etymøn . 
He searches  the word ‘kalem.’ 

3. He enjoys  as  she watches  fancy  animations  turning  a sea of 
languages  into  a cloud-like figure zooming  into  the word 
‘kalem’  appears  on screen  as  the website does  its  job. 

4. Then  a map  that looks  like a cloud  of  words  appears  on the 
screen.  He sees that word ‘Kalem’  is  connected  to  the words 
’kạlam’      and   ‘calamus’.  

5. He learns  that origin  of  word kalem is  coming  from word 
‘kamis’  which  means  ‘made from wood’. Also he learns  that 
kalam and  calamus  are from same origin  as  kalem. 

 
  

8 



 

3.1.2. Use Case Descriptions 

Different than visionary scenarios use case descriptions involve system responses to           
actor’s actions.  

 

Use case 
name 

SearchWords* 

Participating 
actors 

User,  WordDatabase 

Entry 
condition 

User wants  to  search  when  Etymøn  is  open 

Exit condition User gets  the word cloud  and  decides  to  go back  to  the language sea. 

Main  flow  of 
events 

1. User opens  Etymøn . 
2. Etymøn  generates  the language sea. 

3. User enters  a word to  search. 
4. Etymøn  queries  the word from WordDatabase. 
5. Then  zooms  into  the word in  the language sea and 

creates  a word cloud  for  the searched  word. 
6. User looks  at the word cloud  and  after  getting  the necessary 

etymological  information,  decides  to  go back  to  the language 
sea. 

Alternative 
flow  of 
events 

● User enters  a word unknown to  the system. 
● Etymøn  gets  the definition  and  pronunciation 

information  for  the word from a dictionary  and  trains 
the machine  learning  algorithm with it and  returns 
the newly-generated  word cloud. 

● After  getting  the word cloud,  user  jumps  to  a related  word near 
in  the cloud. 

● Etymøn  transitions  into  the word cloud  that related 
word. 

Quality 
requirements 

● While rendering  the word cloud,  Etymøn  uses  the nearest word 
relations  in  order  to  present the adequate  number  of  relevant 
words  for  the searched  word. 

● When  a word is  not found,  a message should be displayed  as  the 
training  of  the machine  learning  algorithm may  take time. 

 
* The use case, SearchRandom, has a similar scenario as SearchWords. Instead of             
searching for a specific word, the user prompts the system to search for any random word.                
The system responds just as it does for SearchWords, except that it only searches words               
that  already exist  in the database, so there will  not  be an alternative flow  of events.  

 
 

9 



Use case name manageMap 

Participating 
actors 

Administrator,  WordDatabase 

Entry condition Administrator  wants  to  modify  the arrangement  of  two  word 
nodes  in  the WordDatabase  

Exit condition Administrator  successfully  modifies  the relation  of  two  words. 

Main  flow  of 
events 

1. Administrator  opens  Etymøn . 
2. Etymøn  opens  administration  panel. 

3. Administrator  navigates  through  WordDatabase and  finds 
the two  words  she wants  to  alter. 

4. Administrator  can  choose to  delete a word, delete  an 
existing  relation  or  create  a new  relation  between  words. 
She can  also  strengthen  or  weaken  the particular  relation 
between  them. 

5. Etymøn  applies  the queried  operation  to 
WordDatabase 

6. After  making  the wanted  changes  administrator  saves  the 
changes  and  exits  the administration  panel.  

Quality 
requirements 

● While navigating  through  the WordDatabase  user  interface 
should help  the navigator  find  his/her  target with useful 
filters  and  search  tools. 

● Altering  relation  between  words  should be simple and  easy. 

 
 
  

10 



 

Use case name ExploreMap 

Participating 
actors 

User,  WordDatabase 

Entry condition User wants  to  explore the words  available  in  the Language 
Sea and  see their  relation  to  other  words. 

Exit condition User decides  to  stop exploring  and  closes  the application 

Main  flow  of 
events 

1. User opens  Etymøn . 
2. Etymøn  generates  the language sea. 

3. User navigates  through  the Language Sea. 
4. User selects a word in  a word cloud. 

5. Etymøn  displays  the information  about the word that 
it gets  from the Word  Database such  as  its  origin, 
meaning  pronounciation  and  context. 

6. After  exploring  enough  words, word clouds,  and 
languages  user  closes  the application..  

Quality 
requirements 

● While navigating  through  the WordDatabase user 
interface  should help  the navigator  find  his/her  target with 
useful filters  and  search  tools. 

● Information  about the selected words  should be presented 
to  the user  in  a nice and  understandable  manner. 

 
 
 
 
  

11 



 
 

Use case name ScanObject 

Participating 
actors 

User,  AR  Module,  Object  Recognition  Module 

Entry condition User scans  an  object with their  camera  and  wants  to  search  the 
word of  the object on Etymøn  

Exit condition  User sees the word cloud  on the scanned  object and  stops  the 
scanning.  

Main  flow  of 
events 

1. User opens  Etymøn . 
2. User points  at object with camera  and  scans  it.  

3. Etymøn  queries  the object image from the Object 
Recognition  Module to  search  the word. 

4. Etymøn  queries  the word from WordDatabase to  get 
its  features  to  be trained  by the machine learning 
module. 

5. Then  zooms  into  the word in  the language sea and 
creates  a word cloud  for  the searched  word. It uses  the 
AR module to  display  this  on the screen  where the 
object is  being  scanned.  

6. User looks  at the word cloud  and  after  getting  the necessary 
etymological  information  and  closes  Etymøn . 

Alternative  flow 
of events 

● User scans  an  object not recognizable  to  the system. 
● Etymøn  displays  an  error  message and  prompts 

user  to  properly  focus  camera  more on the image.  

Quality 
requirements 

● Objects  scanned  are limited  to  the WordDatabase.  If  the word 
database does  not have recognized  object word, an  error 
message will be displayed.  

 
 
 
 
 
 
 
 
 
 
 
 

12 



Use case name ManageWord 

Participating 
actors 

Admin,  WordDatabase 

Entry condition Admin  wants  to  add  a definition  to  the word 

Exit condition Admin  sees the notification  informing  whether  the word 
definition  was successfully  changed. 

Main  flow  of 
events 

1. Admin  enters  Etymøn  system as  an  admin. 
2. Etymøn  shows  the page with menu  for  admins. 

3. Admin  clicks  on magnifier  which  indicates  a word search.  
4. Meanwhile it is  opening  the WordDatabase 

module for  interactive  search  of  words.  
5. Etymøn  returns  extended  search  bar  indicating 

it is  ready  to  search  a word. 
6. Admin  enters  a word in  search  bar. 

7. Etymøn  shows  the list  of  words  starting  with 
the letters  entered  (  for  example,  if  user  enters 
“break”,  the system shows  “breakage”, 
“breakdown”,  “breakfast”,  “breakthrough”,  etc) 
in  alphabetical  order  under  the search  bar. 

8. Admin  chooses  the desired  word. 
9. The system shows  the page containing  the data 

on the word from WordDatabase.  It includes  the 
definition  section  with multiple definitions, 
pronunciation,  related  languages,  etc. 

10. Admin  choose “edit definition”  indicated  as  a pencil near 
Definitions  section. 

11. The system returns  the Edit Definition  page 
where the data on definition  is  shown and  have 
+, -  and  pencil symbols  near  related  sections. 

12. Admin  chooses  a + sign meaning  “add  definition”. 
13. Etymøn  shows  an  empty  bar  under  all existing 

definitions. 
14. Admin  enters  the new  definition  and  clicks  Save. 

15. The system updates  the definition  by adding  one 
more definition  to  the word. 

16. Etymøn  shows  a notification  saying  that the 
update was successful,  if  it was successful.  If  it 
wasn’t for  some reason,  it shows  a notification 
stating  that the word definition  wasn’t updated. 

 
 

 
 

13 



Use case name ManageLanguage 

Participating 
actors 

Admin,  LanguageSea,  LanguageFamily,  Language 

Entry condition Admin  wants  to  add  a language to  language sea 

Exit condition Admin  sees the notification  on whether  the language was 
successfully  added. 

Main  flow  of 
events 

1. Admin  enters  Etymøn  system as  an  admin. 
2. Etymøn  shows  the page with menu  for 

admins. 
3. Admin  enters  the Language Sea. 

4. Etymøn  shows  the page with language sea 
options. 

5. It shows  the list  of  language families  and  the 
list  of  languages  within  the families. 

6. Admin  chooses  to  add  a new  language. 
7. The system shows  the page containing  the 

blank  sections  needed  to  be filled  about the 
language,  like the name of  language,  and 
potions  to  choose,  like language family  it 
belongs. 

8. Admin  fills  the blank  sections  and  clicks  Save. 
9. The system updates  the language sea by adding 

the new  language. 
10. Etymøn  shows  a notification  saying  that the 

update was successful,  if  it was successful.  If  it 
wasn’t for  some reason,  it shows  a notification 
stating  that the language was not added. 

Alternative  flow 
of events 

● Admin  does  not find  a language family  to  which  the 
language should be added.  

1. He/she chooses  to  add  new  language family  in  the 
add  new  language page by clicking  “add  new 
language family” at the end  of  language families 
list. 

2. Etymøn  shows  the empty  text bar  under 
the “add  new  language family” asking 
the name of  new  language family. 

3. Admin  types  the name and  presses  Enter. 
4. The system creates  new  language family 

and  shows  it in  the add  new  language 
page under  the the language families  list. 

 
 

14 



 

Use case name HallucinateWords 

Participating 
actors 

User,  WordDatabase 

Entry condition User wants  to  hallucinate  from a given  word 

Exit condition User decides  to  return  to  the language sea. 

Main  flow  of 
events 

1. User decides  to  hallucinate  a new  word. 
2. Etymøn  asks  whether  the user  wants  to  start 

from a random word or  a specific one. 
3. User chooses  to  begin  with a random word. 

4. Etymøn  selects a random word 
5. Then  zooms  into  the word in  the language sea. 
6. Etymøn  retrieves  the features  of  the word from 

WordDatabase  to  be used  in  the machine 
learning  (ML)  algorithm. 

7. Etymøn  starts  transfiguring  the word into 
different words  based  on the outputs  from the 
ML algorithm. 

8. User looks  at the development  of  new  words, then  decides 
to  go back  to  the general view  of  the language sea. 

Alternative  flow 
of events 

● User decides  to  start with a specific word. 
● Etymøn  directly  uses  the given  word in  ML 

algorithm instead  of  a random word. 

Quality 
requirements 

● Machine learning  algorithm that will hallucinate  based  on 
the input text should use generative  network  algorithms. 

 
 
  

15 



 

3.2. Dynamic Model 

In this section, the problem domain is analyzed in terms of its dynamic nature in order to                 
understand the required component actions. This dynamic behavior is represented by           
several scenarios and their respective UML sequence diagrams in the following pages. As             
the last dynamic model, an activity diagram is presented that goes over the actions taken               
by the system during the onset of system lifecycle. As previously mentioned, state             
diagrams are not represented for each class here, as most the classes in the object model                
are simple ones without  multiple states. 
 

Scenario  name Enter  Etymøn 

Participating  actor  instances User 

Scenario User starts  the program by opening  the window  or  mobile 
application.  The system displays  the menu  and  generates 
a language sea and  performs  some animation. 

 
 

 
Figure 4 This is  the UML sequence diagram for  the Enter Etymon scenario. 

  

16 



 
 

Scenario  name Word  Search 

Participating  actor  instances User 

Scenario User chooses  to  perform a search  a certain  word. The 
system looks  up for  the word in  the database.  If  there is 
no such  word, it generates  it (by  using definitions  and 
pronunciation  data from dictionary).  Then  it zooms  in  to 
the word in  the language sea, generates  word cloud  of 
that word, and  shows  it.  

 
 
 
 

 
 

Figure 5 This is  the UML sequence diagram for  the Word  Search scenario. 

17 



Scenario  name Hallucinate 

Participating  actor 
instances 

User 

Scenario User chooses  to  perform a search  a certain  word. The system 
looks  up for  the word in  the database.  If  there is  no such  word, it 
generates  it (by  using definitions  and  pronunciation  data from 
dictionary).  Then  it zooms  in  to  the word in  the language sea, 
generates  word cloud  of  that word, and  shows  it. 

 
 

 
Figure 6 This is  the UML sequence diagram for  the Hallucinate scenario. 

18 



Scenario  name Scan  Object 

Participating 
actor  instances 

User 

Scenario User uses  a phone application  version  and  chooses  scan object option. 
The system first opens  the camera  and   then  using the object 
recognition  module scans  and  recognizes  the object that is  pointed  by 
user  with camera.  Object recognition  module returns  the name of  the 
object.  The system then  searches  the word in  database and  shows  it 
on the object using augmented  reality  module.  Then  it zooms  in  to 
that word on language sea, generates  a word cloud,  and  displays  it 
still using AR module. 

 
 
 

 
Figure 7 This is  the UML sequence diagram for  the Scan Object  scenario.  

19 



 

 

Figure 8 This figure shows the event  flow  of Etymøn, it  is  the UML activity diagram of the system. 
  

20 



3.3 Object & Class Model 

In this section, relations between objects of the Etymøn System are shown using an UML class diagrams. Attributes and methods of the                      
various classes are represented. 

 

 
Figure 9 This figure shows the UML Class  diagram of the system. The main component  is  the controller and  the other classes are trivial 

representations  of actual  objects  in problem space. 

21 



 
 

 

3.4. User Interface 

This section gives the details of the user interface of the Etymon system. The overall  walkthrough of 
the user interface is given in Figure 10. Based on these, screenshots of several  screens are presented 
in the following figures. 
 
 

Figure 10 This is  the diagram for  the UI transitions  based  on input  from  user. 
  

22 



 
 
 

 
 

Figure 11 Etymøn’s  welcome page. From this  panel  you can go to search word, hallucinate 
and  help panels. You can also “Scan Object”  option to open your camera and  use 

augmented  reality functionality. 
  

23 



 
 
 

 
 

Figure 12 This figure represents  the help panel  Etymøn provides  to the user. Slides  of 
panels  will  help user to learn  how  to use the application efficiently. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 



 
 
 

 
 

Figure 13 In this  panel  Etymøn will  show  random words from  same word  cloud 
—etymologically similar words— and  will  hallucinate, imagine new  words from  the words it 

selected  and  present  it   to the user.  

25 



 

 
 

Figure 14 This figure represents  the augmented  reality functionality of Etymøn.  

 

  

26 



4. References 

[1] C. Diagne and N. Barradeau, Free Fall,  https://artsexperiments.withgoogle.com/freefall/wave. 
[Accessed: 09-Oct-2017].  

[2]  J. Redmon, YOLO: Real-Time Object Detection. [Online]. Available: 
https://pjreddie.com/darknet/yolo/. [Accessed: 09-Oct-2017].  

[3] “Word2vec,” Wikipedia, 26-Sep-2017. [Online]. Available: 
https://en.wikipedia.org/wiki/Word2vec. [Accessed: 09-Oct-2017]. 

[4] Object-Oriented Software Engineering, Using UML, Patterns, and Java, 2nd Edition, by Bernd 
Bruegge and Allen H. Dutoit, Prentice-Hall, 2004, ISBN: 0-13-047110-0. 

 

27 


